Balanced Nutrition & Crop Production Practices for Sorghum Nutrient Partitioning & Closing Yield Gaps

Ignacio A. Ciampitti, Cropping Systems Specialist Bailey McHenry, MS Graduate Student Department of Agronomy, K-State Univ. <u>ciampitti@ksu.edu</u>, 785-410-9354 Crop Production Lab @KSUCROPS (TWITTER)

Historical Yield Evolutions: Kansas

Management Practices: Sorghum Identifying Critical Plant Components

1100% Plants/Acre **3500%** Seed#/Plant

Seed Number

433% Tillers/Plant 220% Gm/seeds

angint (g/1000 seeds)

Management Practices: Understanding Sorghum Yield Components

Objectives

- Understand the effect of fertilizer applications and their interactions with diverse management practices
- Identify management factors that contribute to high sorghum yields
- Investigate nutrient uptake and partitioning under different environments and crop production practices (nutrient information is not yet available)

Materials & Methods

11 Treatments, 5 reps/location:

- 1) (KS) Full Treatment or "Kitchen Sink" (high plant pop., 15" rows, GreenSeeker N, Insecticide/fungicide, micronutrients, starter fertilizer, plant growth regulator)
- 2) (PD) Plant Density (40,000 vs. 80,000)
- 3) (RS) Row Spacing (30" rows)
- 4) (Pre-N) Nitrogen (50 lbs/acre all at pre-planting)
- 5) (FI) Foliar Fungicide/Insecticide (Without chemicals)
- 6) (Micro) Foliar Micronutrients (Fe, Zn) (Without micronutrients)
- 7) (PGR) Plant Growth Regulator (Without PGR)
- 8) (NP) Fertilizer NPKS Starter (only NP starter)
- 9) (Cl) Chloride (Without Chloride)
- 10) (FP) Farmer Practice (Lower plant pop., wide rows, NP starter)
- 11) (KS+N) Non-limiting N = Kitchen Sink +N (Treatment #1 + 50 lbs extra N)

Treatments & Experimental Design

	Treatments										
	1 (KS)	2 (PD)	3 (RS)	4 (PD)	5 (F/I)	6 (Micros)	7 (PGR)	8 (NP)	9 (Cl)	10 (FP)	11 (KS+N)
Seeding rate	Optimum	Normal	Optimum	Optimum	Optimum	Optimum	Optimum	Optimum	Optimum	Normal	Optimum
Row Spacing	15"	15"	30"	15"	15"	15"	15"	15"	15"	30"	15"
N Program	GS	GS	GS	Standard	GS	GS	GS	GS	GS	Standard	GS
Fungicide/Insecticide	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes	No	Yes
Micronutrients	Fe, Zn	Fe, Zn	Fe, Zn	Fe, Zn	Fe, Zn	None	Fe, Zn	Fe, Zn	Fe, Zn	None	Fe, Zn
PGR	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes	No	Yes
Starter Fertilizer	NPKSZn	NPKSZn	NPKSZn	NPKSZn	NPKSZn	NPKSZn	NPKSZn	NP	NPKSZn	NP	NPKSZn
Chloride	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No	No	Yes
GreenSeeker + N	No	No	No	No	No	No	No	No	No	No	Yes

Soil Characterization

Soil parameters	Rossville	Scandia	
Buffer pH (SMP)	7.4	6.6	
Mehlich P (ppm)	22.7	27.2	
Summation CEC	5.6	28.5	
(meq/100g)	5.0	20.5	
OM (%)	1.2	2.8	
K (ppm)	102.3	614.7	

Crop Phenology

KANSAS STATE

UNIVERSITY

Rossville Scandia **Plant Phenology** Planting Date May 19 May 22 V-5 growth stage June 27 July 2 Flowering August 1 August 4 Mid-Reproductive August 29 September 2 November 14 Harvest September 26

Plot Layout

COMMON PRACTICES in SORGHUM

Treatments & Experimental Design

Troatmont #	N	Average GreenSeeker N	Total N		K20	c		E o	7n	- ΤΟΤΔΙ Ν
freatment #	IN	Average Greenseeker N	TOLATIN	P205	KZU	3	LI	ге	Z11	
				lbs per a	cre					_
1	20	35	55	20	20	20	20	2	2	105
2	20	39	59	20	20	20	20	2	2	109
3	20	20	40	20	20	20	20	2	2	90
4	20	0	20	20	20	20	20	2	2	120
5	20	30	50	20	20	20	20	2	2	100
6	20	27	47	20	20	20	20	0	0	97
7	20	27	47	20	20	20	20	2	2	97
8	20	30	50	20	0	0	20	2	2	100
9	20	33	53	20	20	20	0	2	2	103
10	20	0	20	20	0	0	0	0	0	70
11	20	78	98	20	20	20	20	2	2	148

Application Rates: Tilt (fungicide): 2-4 fl. oz. per acre Sevin (insecticide): 1-2 quarts per acre MCP-Agrofresh (plant growth regulator): 100 g per acre

All chemicals were applied 15-20 days after flowering time

Treatment	PGR (g/plot)	Fungicide (mL/plot)	Insecticide (mL/plot)
1	1	1.4	11
2	1	1.4	11
3	1	1.4	11
4	1	1.4	11
5	1	0	0
6	1	1.4	11
7	0	1.4	11
8	1	1.4	11
9	1	1.4	11
10	0	0	0
11	1	1.4	11

Weather Conditions: 2014

© IA Ciampitti, K-State Univ

6

3

Jan 1:15

Precipitation (inches)

Grain Sorghum Water Use

Data Collection

- Plant population: stand counts
- Accurate meteorology measurements (light intensity, temperature, precipitation, humidity, wind speed)
- Soil Nutrient Analysis at pre-planting
- Leaf Area Index at 5th leaf collar, half-bloom
- Chlorophyll (SPAD) readings at 5th leaf collar, and half-bloom
- Canopy temperature at half-bloom
- Aboveground biomass, nutrient concentrations, and nutrient uptake at 5th leaf collar, half-bloom and physiological maturity (Stems, leaves, and heads)
- Grain yield (moisture, test weight, and yield components: grain number/head and seed weight)

Biomass & Nutrient Sampling

Results 2014 Season Closing Grain Sorghum Yield Gaps

Field Site	Mean Min. Yield Yield		Max. Yield	Coefficient of Variation		
	- bus	shels per a	%			
Scandia	109	82	139	13.7		
Rossville	129	101	151	8.3		

Grain sorghum yields were superior at Rossville (irrigated site), +20 bu/acre, as compared with the Scandia site.

Total variation (max. – min.) was similar in both sites (50-57 bu/acre), but the coefficient of variation (CV) was lower at Rossville (+5% lower).

Closing Grain Sorghum Yield Gaps

#1 = Kitchen Sink (KS)
#10 = Common Practice (CP)

YIELD GAP = 12 bu/acre

MAX. YIELD #1, 4, 5, 6 MIN. YIELD #7 (No-PGR), 10

#9 = Kitchen Sink (- Cl)
#10 = Common Practice

YIELD GAP 20 bushels per acre

MAX. YIELD #9, 8, 6, 5, 3, 2, 1 MIN. YIELD #7 (No-PGR), 4 (Pre-N), 10

Rossville: Average Yields for each Treatment 145 135 YIELD (BU./AC) 125 115 105 95 85 75 2 1 3 8 9 10 4 11 TREATMENTS

Leaf Area Index (LAI): 2014 Season

LAI at flowering was similar across treatments

Plant Biomass vs. Stem Volume Estimation

Input Variables

Stem volume (SV)= πx (Stem diameter/2) x plant height

YIELD COMPONENTS: Grain Harvest Index Grain Harvest Index = Grain yield/ Rossville

(stover + grain biomass)

Seed number per head and seed weight (g/1000 seeds) did not differ.

2014

YIELD COMPONENTS: Grains per Head & Seed Weight Scandia

Seed weight (g/1000 seeds) KS (#1) > CP (#10) 23 > 22 g/1000 seeds Grains per head KS (#1) > CP (#10) 2263 > 1945 grains per head

2014

Summary

- Under irrigation, max. yield was obtained in the KS treatment, primarily related to a change in the biomass conversion efficiency (grain HI).
- Under dryland, max. yield was obtained via changes in grain yield components: seed number per head and seed weight.
- For Scandia (northern location), row spacing, population, and starter fertilizer seemed to be the main production practices impacting yields.
- For Rossville, precise N fertilization (rather than pre-plant N) seemed to be a key factor for increasing sorghum grain yields (under irrigation).

QUESTIONS?

Ignacio A. Ciampitti, Cropping Systems Specialist

Department of Agronomy, K-State Univ. ciampitti@ksu.edu, 785-410-9354 @KSUCROPS (TWITTER)

